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Abstract: We investigate an important question of Hawking-like radiation as seen by

an infalling observer during gravitational collapse. Using the functional Schrodinger for-

malism we are able to probe the time dependent regime which is out of the reach of the

standard approximations like the Bogolyubov method. We calculate the occupation num-

ber of particles whose frequencies are measured in the proper time of an infalling observer

in two crucially different space-time foliations: Schwarzschild and Eddington-Finkelstein.

We demonstrate that the distribution in Schwarzschild reference frame is not quite ther-

mal, though it becomes thermal once the horizon is crossed. We approximately fit the

temperature and find that the local temperature increases as the horizon is approached,

and diverges exactly at the horizon. In Eddington-Finkelstein reference frame the temper-

ature at the horizon is finite, since the observer in that frame is not accelerated. These

results are in agreement with what is generically expected in the absence of backreaction.

We also discuss some subtleties related to the physical interpretation of the infinite local

temperature in Schwarzschild reference frame.
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1 Introduction

Understanding quantum radiation from collapsing objects, despite tremendous progress

made in the last thirty years, still represents a major challenge in theoretical physics.

An asymptotic observer, watching gravitational collapse of a massive object, will start

registering radiation of quanta coming from the fields excited by the non-trivial metric of

the background space-time. As the radiation progresses, it acquires more and more thermal

features. Finally, when the horizon is formed, radiation becomes completely thermal, in

agreement with the fact that radiation from a pre-existing horizon must be thermal, as

shown for the first time by Hawking [1]. In this picture, radiation is treated in the context

of quantum mechanics, while the background is described by classical general relativity.

Moreover, the background is held fixed, i.e. the form of the metric and even the mass of

the collapsing object (or a black hole) are held fixed. It is extremely difficult to include

any form of backreaction in the realistic models (see [2–7] for some attempts).

In the absence of any backreaction, the radiation flux as seen by an asymptotic ob-

server is constant at late times. If integrated over the infinite time (an asymptotic observer

sees formation of a horizon only after infinite amount of his time) this flux diverges. How-

ever, in classical general relativity, an infalling observer (say an observer which is falling

together with a collapsing object) will cross the Schwarzschild radius in the finite amount

of his proper time. This time interval corresponds to an infinite interval of the asymp-

totic observer. The question then is what such an observer would see. The answer will

likely strongly depend on the space-time foliation one chooses. If an observer is infalling

in Schwarzschild reference frame, his trajectory in any given moment corresponds to an

accelerated observer. Though such an observer reaches the Schwarzschild radius in finite

time, his acceleration diverges there and the temperature he measures will diverge. Such
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an observer would need to encounter all of the radiation that an asymptotic observer would

see, only in finite time. Will such an observer be burned by an intensive radiation as he

is sailing toward the Schwarzschild radius? Not necessarily. A ”particle” has no invariant

meaning. The distribution of produced particles (occupation number as a function of the

frequency) strongly depends on the frequency of produced ”particles”. Since proper time

coordinates for an asymptotic and infalling observers are different, it is likely that these

two different observers will register different distributions of particles.

A very important complementary picture is given by Eddington-Finkelstein coordinates

where the singularity at the horizon is absent. Such an observer would still register radiation

due to the time dependent metric, however we do not expect that such radiation will be

thermal in the whole frequency range. In addition, since the Schwarzschild radius is not a

singular point, we do not expect the temperature of such radiation to diverge there.

Unfortunately, arguments of this type have remained only qualitative so far. The rea-

son is that the notion of particles is well defined only in the asymptotically flat regions

(e.g Minkowski or Schwarzschild). In the Bogolyubov method, which is widely used in

this context, one matches the coefficients between the two asymptotically flat spaces, i.e.

Minkowski at the beginning and Schwarzschild at the end of the gravitational collapse. The

mismatch of these two vacua gives the number of produced particles. What happens in be-

tween is beyond the scope of the Bogolyubov method. Thus, the question what an infalling

observer (in different space-time foliations) would register during the collapse can not be

answered in the context of the Bogolyubov method. However, recently developed func-

tional Schrodinger formalism, goes beyond the approximations of the Bogolyubov method.

In this context, one can successfully attack the question of radiation as seen by an infalling

observer, which is the goal of this paper.

2 Radiation as seen by an infalling observer in Schwarzschild reference

frame

We consider a spherical domain wall representing a spherical shell of collapsing matter.

The wall is described by only the radial degree of freedom, R(t). The metric is taken to be

the solution of Einstein equations for a spherical domain wall. The metric is Schwarzschild

outside the wall, as follows from spherical symmetry [8]

ds2 = −
(

1 − Rs

r

)

dt2 +

(

1 − Rs

r

)−1

dr2 + r2dΩ2 , r > R(t) (2.1)

where Rs = 2GM is the Schwarzschild radius in terms of the mass, M , of the wall, and

dΩ2 = dθ2 + sin2 θdφ2 . (2.2)

In the interior of the spherical domain wall, the line element is flat, as expected by

Birkhoff’s theorem,

ds2 = −dT 2 + dr2 + r2dθ2 + r2 sin2 θdφ2 , r < R(t) (2.3)

– 2 –
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The equation of the wall is r = R(t). The interior time coordinate, T , is related to the

asymptotic observer time coordinate, t, via the proper time of an observer moving with

the shell, τ . The relations are

dT

dτ
=

[

1 +

(

dR

dτ

)2
]1/2

(2.4)

and

dt

dτ
=

1

B

[

B +

(

dR

dτ

)2
]1/2

(2.5)

where

B ≡ 1 − Rs

R
(2.6)

We will single out an observer who is falling together with the collapsing shell, which means

that he moves on the trajectory r = R(τ) and measures the proper time τ . By integrating

the equations of motion for the spherical domain wall, Ipser and Sikivie [8] found that the

mass is a constant of motion and is given by

M =
1

2
[
√

1 +R2
τ +

√

B +R2
τ ]4πσR

2 (2.7)

where Rτ = dR/dτ , while σ is the surface tension (energy density per unit area) of the

wall. It is assumed that max(R) < (4πGσ)−1 to avoid the case in which the domain wall

is already within its own Schwarzschild radius to begin with. This expression for M is

implicit since Rs = 2GM occurs in B. Solving for M explicitly in terms of Rτ gives

M = 4πσR2[
√

1 +R2
τ − 2πGσR]. (2.8)

From the mass, the velocity is given by

|Rτ | =

√

(

M

4πσR2
+ 2πσGR

)2

− 1. (2.9)

Now consider a massless scalar field Φ which propagates in the background of the

collapsing shell. The action for the scalar field is

S =

∫

d4x
√−g1

2
gµν∂µΦ∂νΦ , (2.10)

where gµν is the background metric given by eq. (2.1) and eq. (2.3). Decomposing the

(spherically symmetric) scalar field into a complete set of real basis functions denoted

by {fk(r)}
Φ =

∑

k

ak(τ)fk(r) (2.11)

we can find a complete set of independent eigenmodes {bk} for which the Hamiltonian is

a sum of terms. The total wavefunction then factorizes and can be found by solving a

time-dependent Schrödinger equation of just one variable.

– 3 –
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Since the metric inside and outside the shell have different forms, we can split the

action (2.10) into two parts

Sin = 2π

∫

dτ

∫ R(τ)

0
drr2

[

− 1
√

1 +R2
τ

(∂τΦ)2 +
√

1 +R2
τ (∂rΦ)2

]

(2.12)

Sout = 2π

∫

dτ

∫ ∞

R(τ)
drr2

[

− B
√

B +R2
τ

(∂τΦ)2

1 −Rs/r
+

√

B +R2
τ

B

(

1 − Rs

r

)

(∂rΦ)2

]

. (2.13)

where we used (2.4) and (2.5).

The most interesting things happen when the shell (and the infalling observer sitting

on the shell) approaches the Schwarzschild radius. From eq. (2.9) we see that Rτ is constant

in the limit when R → Rs. Therefore the kinetic term for Sin is roughly constant. The

kinetic term in Sout goes to zero as R→ Rs, so the Sin kinetic term is dominant. Similarly

the potential term in Sin goes to a constant while the potential term in Sout becomes very

large, so the potential term in Sout dominates. Strictly speaking, this argument fails in

the neighborhood of r = R, however the dominant contribution to the integrals will be for

r 6= R. Therefore we can write the action as

S ≈ 2π

∫

dτ

[

−
∫ Rs

0
drr2

1
√

1 +R2
τ

(∂τΦ)2 +

∫ ∞

Rs

drr2
|Rτ |
B

(

1 − Rs

r

)

(∂rΦ)2

]

(2.14)

where we have changed the limits of integration from R(τ) to Rs since this is the region

of interest.

Using the expansion in the modes eq. (2.11), we can rewrite the action as

S ≈
∫

dτ

[

−1

2

1
√

1 +R2
τ

ȧk(τ)Akk′ ȧk′(τ) +
|Rτ |
2B

ak(τ)Ckk′ak′(τ)

]

(2.15)

where ȧ = da/dτ , and A and C are matrices that are independent of R(τ) and are given by

Akk′ = 4π

∫ Rs

0
drr2fk(r)fk′(r) (2.16)

Ckk′ = 4π

∫ ∞

Rs

drr2
(

1 − Rs

r

)

f ′k(r)f
′
k′(r). (2.17)

From the action (2.14) we can find the Hamiltonian, and according to the standard

quantization procedure, the wave function ψ(ak, τ) must satisfy

i
∂ψ

∂τ
= Hψ , (2.18)

or

i
∂ψ

∂τ
=

[

1

2

√

1 +R2
τΠk(A

−1)kk′Πk′ +
|Rτ |
2B

ak(τ)Ckk′ak′(τ)

]

ψ

where

Πk = −i ∂

∂ak(τ)
(2.19)
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is the momentum operator conjugate to ak(τ).

So the problem of radiation from the collapsing domain wall for the infalling observer

is equivalent to the problem of an infinite set of coupled harmonic oscillators with time

dependent frequency. Since A and C are symmetric and real (i.e. Hermitian), it is possible

to simultaneously diagonalize them using the principal axis transformation. Then for a

single eigenmode, the Schrödinger equation takes the form

[

− 1

2m

√

1 +R2
τ

∂2

∂b2
+

|Rτ |
2B

Kb2
]

ψ(b, τ) = i
∂ψ(b, τ)

∂τ
(2.20)

where m and K denote eigenvalues of A and C, and b is the eigenmode.

Re-writing eq. (2.20) in the standard form we obtain

[

− 1

2m

∂2

∂b2
+
m

2
ω2(η)b2

]

ψ(b, η) = i
∂ψ(b, η)

∂η
(2.21)

where

ω2(η) =
K

m

|Rτ |
B

√

1 +R2
τ

≡ ω2
0

|Rτ |
B

√

1 +R2
τ

(2.22)

and

η =

∫

dτ ′
√

1 +R2
τ . (2.23)

where we defined ω2
0 ≡ K/m. The exact solution to eq. (2.21) is given by [9]

ψ(b, η) = eiα(η)

(

m

πρ2

)1/4

exp

[

im

2

(

ρη

ρ
+

i

ρ2

)

b2
]

(2.24)

where ρη = dρ/dη and ρ is given by the real solution of the ordinary (though non-linear)

differential equation

ρηη + ω2(η)ρ =
1

ρ3
(2.25)

with initial conditions

ρ(0) =
1√
ω0
, ρη(0) = 0. (2.26)

The phase α is given by

α(η) = −1

2

∫ η

0

dη′

ρ2(η′)
. (2.27)

Complete information about the radiation in the background of the collapsing shell is

contained in the wavefunction (2.24).

Consider an observer with detectors that are designed to register particles of different

frequencies for the free field Φ. Such an observer will interpret the wavefunction of a given

mode b at some later time in terms of simple harmonic oscillator states, {ϕn}, at the final

frequency, ω̄. The initial (τ = 0) vacuum state for the modes is the simple harmonic

oscillator ground state

ϕ(b) =
(mω0

π

)1/4
e−mω0b2/2 . (2.28)

– 5 –



J
H
E
P
0
9
(
2
0
0
9
)
0
5
8

2.24 2.26 2.28 2.30 2.32 Τ�
RS0

46
8N Ω

-RS
= 2, 4, 10

Figure 1. The occupation number N as a function of the proper time τ/Rs for various fixed values

of particle frequencies ω̄Rs. The curves are lower for higher values of ω̄Rs. The occupation number

diverges as the infalling observer approaches Rs, which happens as τ → τc = 2.33333 . . .R−1

s
.

The relationship between the coordinates η and τ is given by eq. (2.23), which near Rs

simplifies to dη/dτ =const. The number of quanta in eigenmode b can be evaluated by

decomposing eq. (2.24) in terms of the states and evaluating the occupation number of that

mode. The wavefunction for a given mode in terms of simple harmonic oscillator basis is

given by

ψ(b, τ) =
∑

n

cn(τ)ϕ(b) (2.29)

where

cn =

∫

dbϕ∗
n(b)ψ(b, v) (2.30)

which is an overlap of the wavefunction at some later time ψ(b, τ) with the simple harmonic

oscillator basis functions. The occupation number at eigenfrequency ω̄ is given by

N(τ, ω̄) =
∑

n

n|cn|2. (2.31)

The occupation number in the eigenmode b is then given by (see appendix A)

N(τ, ω̄) =
ω̄ρ2

√
2

[

(

1 − 1

ω̄ρ2

)2

+

(

ρτ

ω̄ρ

)2
]

. (2.32)

where ρτ = dρ/dτ .

For fixed ω̄, N is a function of time since ρ and ρτ are functions of time. In figure 1

we plot the occupation number of produced particles as a function of time (for several

fixed frequencies ω̄Rs). The amount of proper time needed for the shell (and the infalling

observer) to reach Rs can be obtained by integrating eq. (2.9). For σ = 0.01R−3
s this

critical proper time is τc = 2.33333 . . . R−1
s . Figure 1 shows that, as the infalling observer

approaches Rs, the occupation number increases and diverges exactly at Rs. The same

conclusion can be drawn by analyzing the occupation number N in eq. (2.32) as a function

– 6 –
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80100N Τ�

RS
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Figure 2. The occupation number N as a function of frequency ω̄Rs for fixed values of the proper

time τ/Rs. The occupation number increases for larger values of τ/Rs as τ → τc = 2.33333 . . .R−1

s
.

of ρ and ρτ (see appendix B). This is in agreement with what one would expect in the

absence of backreaction. Hawking showed in [1] that, for an asymptotic observer, the flux

of particles at late times is steady (constant in time). This means that it diverges for a

fixed background (i.e. fixed mass of the collapsing object) since we effectively keep pumping

energy into the collapsing object so that its mass is constant despite radiation. For the

asymptotic observer it takes infinite amount of his time for the collapsing object to reach

its own Schwarzschild radius. This infinite interval corresponds to a finite time interval of

the infalling observer’s time. Thus, one may conclude that the infalling observer has to

encounter an infinite number of particles before he hits Rs [10]. However, we should keep in

mind that it is the particle occupation number that is divergent, not the actual number of

particles detected by the infalling observer. The number of particles detected may be quite

different from the occupation number. As the infalling observer approaches Rs, he and his

detector get blue-shifted. His detector can not register particles whose wavelength is larger

than his detector; for them the detector is ”inside” the particles [10]. Thus, an infalling

observer might not be able to register all of the created particles. We only calculated the

occupation number of particles contained in the wave function describing radiation at some

later time. The occupation number does not tell us where the particle are nor how they

propagate further.

For fixed time τ , the occupation number N is a function of frequency ω̄ at some fixed

τ . From eq. (2.22) we see that, in order to keep the values of ω̄ fixed in time, ω0 → 0

as B → 0. Thus, ω̄ varies with ω0 and not with time since all of the values for ω̄ must

be calculated at the same final time. In figure 2 we plot the occupation number N as a

function of frequency ω̄Rs for fixed values of the proper time τ/Rs. We can compare these

plots with the occupation numbers for the thermal Planck distribution

NPlanck(ω̄) =
1

eβω̄ − 1
, (2.33)

where β is the inverse temperature. The curves have manifest non-thermal features — the

occupation number does not diverge at ω̄Rs = 0 as in the Planck distribution and small

– 7 –
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Figure 3. Plot of ln(1 + 1/N) as a function of frequency ω̄Rs for fixed values of the proper time

τ/Rs. The slope of the best fit line is β, which is the inverse temperature. The non-thermal

features disappear and the temperature diverges as the Schwarzschild radius is approached, i.e.

τ → τc = 2.33333 . . .R−1

s
.

scale oscillations which were absent in the Planck distribution are present here. However,

as τ → τc = 2.33333 . . . R−1
s the distribution becomes more thermal.

In figure 3 we fit the best fit linear approximation of the spectrum in figure 2. From

eq. (2.33) we see that the slope of the line is β, which is proportional to the inverse

temperature, i.e. T ∝ β−1. Several important features of the Hawking-like radiation can

be read off this plot. Non-thermal features of the radiation are apparent. It is interesting

that, exactly as argued in [11], departures from thermality are larger for larger frequencies.

As the time progresses and the infalling observer is approaching Rs, radiation becomes more

and more thermal even at large frequencies. Finally, at Rs it becomes purely thermal. At

that point a black hole is formed and it is natural that the spectrum become thermal,

as known from various studies of quantum radiation from a pre-existing horizon. We can

not extrapolate the results for any further evolution of the infalling observer since the

near-horizon approximation used in eq. (2.14) fails. In the standard picture, the infalling

observer will reach the singularity, i.e. a region of infinitely strong gravitational field, in

some finite proper time, and any results about produced particles in that regime are likely

to be non-physical. This may not happen if the quantum effects are capable of erasing the

classical singularity at the center, just as in atomic physics quantum mechanics got rid of

the singularity of the Coulomb potential which has an identical 1/r behavior [12].

It is apparent that the slope of the ln(1 + 1/N) versus ω̄Rs curve is decreasing as the

infalling observer is approaching Rs. Exactly at Rs, the slope of the curve is zero indicating

that the temperature of the radiation is infinite. This is not surprising since, as it is well

known, the asymptotic observer in the nearly flat asymptotic region will register Hawking

radiation with some finite temperature. When this temperature is blue-shifted back to

Rs, it clearly diverges. Thus, the occupation number of particles as seen by an infalling

observer will have a distribution with the temperature which diverges as Rs is approached.

Infinite near horizon local temperature of the Hawking-like radiation may or may not

indicate that the backreaction due to radiation will be important in that region. The

– 8 –
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standard lore is that such backreaction is small. For that question, the relevant quantity

which needs to be calculated is the stress-energy tensor near the horizon. As pointed

out in [13], where a simple 1 + 1 dimensional model was studied, the local value of the

stress-energy tensor is small since the local vacuum polarization cancels out the divergent

temperature energy density due to radiation. However, one should keep in mind that a

complete realistic 3 + 1 dimensional calculation does not exist. Also, it may happen that

a local backreaction is small but a global integrated backreaction can not be neglected

since a collapsing object excites fields which are not localized in space and time. These

are the questions of great importance in black hole physics but are outside of the scope of

this work.

3 Radiation in ingoing Eddington-Finkelstein coordinates

Now we consider the collapse from the point of view of an ingoing Eddington-Finkelstein

observer. This is a different space-time foliation than that in Schwarzschild coordinates,

and we expect crucially different results. In particular, since the metric is not divergent at

the horizon, we do not expect infinite temperature there.

For this purpose, we define the ingoing null coordinate v as

v = t+ r∗ (3.1)

where r∗ is the tortoise coordinate. We can then rewrite eq. (2.1) as

ds2 = −
(

1 − Rs

r

)

dv2 + 2dvdr + r2dΩ2, r > R(v). (3.2)

where the trajectory of the collapsing wall is r = R(v). The interior metric is the same

as in eq. (2.3) The interior time coordinate, T , is related to the ingoing null coordinate,

v, via the proper time on the shell, τ . [Note that the proper time τ is different from the

same quantity in Schwarzschild coordinates since the space-time foliation is different.] The

relations are

dT

dτ
=

√

1 +

(

dR

dτ

)2

(3.3)

and

dv

dτ
=

1

B





dR

dτ
−

√

B +

(

dR

dτ

)2


 (3.4)

where

B ≡ 1 − Rs

R
. (3.5)

Consider again a massless scalar field Φ which propagates in the background of the

collapsing shell. The action for the scalar field is

S =

∫

d4x
√−g1

2
gµν∂µΦ∂νΦ, (3.6)

– 9 –
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where gµν is the background metric given by eqs. (2.3) and (3.2). Decomposing the (spher-

ically symmetric) scalar field into a complete set of real basis functions denoted by {fk(r)}

Φ =
∑

k

ak(v)fk(r) (3.7)

we can find a complete set of independent eigenmodes {bk} for which the Hamiltonian is a

sum of terms.

Since the metric inside and outside of the shell have different forms, we again split the

action eq. (3.6) into two parts

Sin = 2π

∫

dT

∫ R(v)

0
drr2

[

−(∂T Φ)2 + (∂rΦ)2
]

, (3.8)

Sout = 2π

∫

dv

∫ ∞

R(v)
drr2

[

∂vΦ∂rΦ + ∂rΦ∂vΦ +

(

1 − Rs

r

)

(∂rΦ)2
]

. (3.9)

We are again interested in the near horizon behavior of the radiation, i.e. as R → Rs. In

this limit we can write eq. (3.4) as

dv

dτ
≈ − 1

2Rτ
(3.10)

where Rτ = dR/dτ . The explicit functional dependence of Rτ can be found again from

eq. (2.9), which is just the consequence of the fact that M in eq. (2.7) is the conserved

quantity also in Eddington-Finkelstein coordinates. Then with the help of eq. (3.3) we can

write eq. (3.8) as

Sin = 2π

∫

dv

∫ R(v)

0
drr2

[

− 1

2

1
√

Rv/2(Rv/2 + 1)
(∂vΦ)2

+ 2
√

Rv/2(Rv/2 + 1)(∂rΦ)2
]

(3.11)

where Rv = dR/dv. Obviously, the action is not singular as R(v) → Rs, unlike the

Schwarzschild case. From eqs. (3.9) and (3.11) we can write the total action as

S ≈ 2π

∫

dv

[

−
∫ Rs

0
drr2

1

2

1
√

Rv/2(Rv/2 + 1)
(∂vΦ)2 (3.12)

+

∫ ∞

Rs

drr2∂vΦ∂rΦ +

∫ ∞

Rs

drr2∂rΦ∂vΦ +

∫ ∞

Rs

drr2
(

1 − Rs

r

)

(∂rΦ)2
]

where we have changed the limits of integration from R(v) to Rs since this is the region of

interest.

Now using the expansion in modes eq. (3.7), we can rewrite the action as

S ≈
∫

dv

[

− 1

2

1
√

Rv/2(Rv/2 + 1)
ȧkAkk′ ȧk′

+
1

2
ȧkYkk′ak′ +

1

2
akY

−1
kk′ ȧk′ +

1

2
akCkk′ak′

]

(3.13)

– 10 –



J
H
E
P
0
9
(
2
0
0
9
)
0
5
8

where ȧ = da/dv, and A, Y and C are matrices that are independent of R(v) and are

given by

Akk′ = 2π

∫ Rs

0
drr2fk(r)fk′(r), (3.14)

Ykk′ = 4π

∫ ∞

Rs

drr2fk(r)f
′
k′(r), (3.15)

Ckk′ = 8π

∫ ∞

Rs

drr2
(

1 − Rs

r

)

f ′k(r)f
′
k′(r). (3.16)

However if we take that the matrices are symmetric and real, we can see that Y = Y−1,

so we can write the action as

S ≈
∫

dv

[

− 1

2

1
√

Rv/2(Rv/2 + 1)
ȧkAkk′ȧk′

+
1

2
Ykk′ (ȧkak′ + akȧk′) +

1

2
akCkk′ak′

]

. (3.17)

From the action eq. (2.142) we can find the Hamiltonian, and according to the standard

quantization procedure, the wave function ψ(ak, v) must satisfy

i
∂ψ

∂v
= Hψ, (3.18)

or

i
∂ψ

∂v
=

[

1

2

√

Rv/2(Rv/2 + 1)Πk(A
−1)kk′Πk′

+
1

2
ak

(

√

Rv/2(Rv/2 + 1)Y2
kk′(A−1)kk′ + Ckk′

)

ak′

+
1

2

√

Rv/2(Rv/2 + 1)ΠkYkk′(A−1)kk′ak′

]

ψ (3.19)

where

Πk = −i ∂
∂ak

(3.20)

is the momentum operator conjugate to ak. Using the momentum Πk, we can rewrite the

Schrödinger equation as

i
∂ψ

∂v
=

[

1

2

√

Rv/2(Rv/2 + 1)Πk(A
−1)kk′Πk′

+
1

2
ak

(

√

Rv/2(Rv/2 + 1)Y2
kk′(A−1)kk′ + Ckk′

)

ak′

− i
1

2

√

Rv/2(Rv/2 + 1)Ykk′(A−1)kk′δkk′

]

ψ (3.21)

where δkk′ is the Kronecker delta function.

So the problem of radiation from the collapsing domain wall for the infalling observer

is equivalent to the problem of an infinite set of decoupled damped harmonic oscillators

– 11 –
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with time-dependent frequency. Since A, Y and C are symmetric and real, it is possible to

simultaneously diagonalize them using the principle axis transformation. Then for a single

eigenmode, the Schrödinger equation takes the form

i
∂ψ

∂v
=

[

− 1

2m

√

Rv/2(Rv/2 + 1)
∂2

∂b2

+
1

2

(

√

Rv/2(Rv/2 + 1)
y2

m
+K

)

b2 − i
y

2m

√

Rv/2(Rv/2 + 1)

]

ψ (3.22)

where m, y and K denote eigenvalues of A, Y and C, and b is the eigenmode.

Re-writing eq. (3.22) in the standard form we obtain

[

− 1

2m

∂2

∂b2
+
m

2
ω2(η) − i

y

2m

]

ψ(b, η) = i
∂ψ(b, η)

∂η
(3.23)

where

ω2(η) =
y2

m2
+
K

m

1
√

Rv/2(Rv/2 + 1)

≡ y2

m2
+

ω2
0

√

Rv/2(Rv/2 + 1)
(3.24)

and

η =

∫

dv′
√

Rv/2(Rv/2 + 1) (3.25)

where we defined ω2
0 ≡ K/m. To find solutions to equation eq. (3.23) we use the ansatz

ψ(b, η) = e−yη/2mφ(b, η). (3.26)

This leads to the equation for φ(b, η)

− 1

2m

∂2φ

∂b2
+
mω2

2
b2φ = i

∂φ

∂η
. (3.27)

As discussed in ref. [9], this has the implicit solution

φ(b, η) = eiα(η)

(

m

πρ2

)1/4

exp

[

im

2

(

ρη

ρ
+

i

ρ2

)

b2
]

(3.28)

where ρη is the derivative of the function ρ(η) with respect to η, and the defining equation

for ρ is

ρηη + ω2(η)ρ =
1

ρ3
. (3.29)

The initial conditions for ρ are taken at some large value of η (i.e. large value of R) denoted

by ηi, so that

ρ(ηi) =
1

√

ω(ηi)
, ρη(ηi) = 0. (3.30)

The phase α is defined by

α(η) = −1

2

∫ η dη′

ρ2(η′)
. (3.31)

– 12 –
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Then eq. (3.26) give

ψ = e−yη/2mφ(b, η) (3.32)

where φ given in eq. (3.28).

Consider an observer with detectors that are designed to register particles of different

frequencies for the free field Φ at early times. Such an observer will interpret the wavefunc-

tion of a given mode b at late times in terms of simple harmonic oscillator states, {ϕn},
at the final frequency ω̄. The number of quanta in eigenmode b can be evaluated by de-

composing the wavefunction eq. (3.32) in terms of the states, {ϕn}, and by evaluating the

occupation number of that mode. To implement this evaluation, we start by writing the

wavefunction for a given mode at time v < vf in terms of the simple harmonic oscillator

basis at v = v0
ψ(b, v) =

∑

n

cn(v)ϕn(b) (3.33)

where

cn =

∫

dbϕ∗
n(b)ψ(b, v) (3.34)

which is the Gaussian overlap with the simple harmonic oscillator basis functions. The

occupation number at eigenfrequency ω̄ by the time v < vf , is given by the expectation

value

N(v, ω̄) =
∑

n

|cn|2 . (3.35)

We evaluate the occupation number in the eigenmode b to be

N(v, ω̄) =
ω̄ρ2

√
2
e−yη/m

[

(

1 − 1

ω̄ρ2

)2

+

(

ρη

ω̄ρ

)2
]

(3.36)

for v < vf .

In figure 4 we plot N versus v/Rs for various fixed values of ω̄Rs. The frequency ω̄ is

measured in time v. We can see that the occupation number at any frequency increases

as v/Rs decreases. Thus more particles are created as the shell reaches and crosses the

horizon. However, the number of created particles does not diverge as R(v) → Rs.

We then numerically evaluate the spectrum of mode occupation numbers at any finite

time and show the results in figure 5 for several values of v/Rs. The first sign of non-

thermality is the fact that the occupation number is non-divergent at ω̄ = 0, as opposed

to the thermal Planck distribution in eq. (2.33).

For the values of parameters taken for plots in figure 4 and figure 5, the Schwarzschild

radius is crossed at v = 0, while the singularity is reached at v = −0.126. However, we can

not extend our plots significantly beyond v = 0 since there our approximation breaks.

In figure 6 we plot ln(1 + 1/N) versus ω̄Rs for various values of v/Rs. As v/Rs

decreases (as the shell is collapsing), the curves decrease. A thermal spectrum should gives

us a straight line, however, we see that is not the case here. The best one can do is to fit the

low frequency part of the spectrum and get the temperature in that regime. We see that the

temperature (of the low frequency part of the spectrum) practically remains constant near

the Schwarzschild radius (near v = 0). The numerical value that we get for the temperature

– 13 –
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�
RS

Ω

- S
=

Figure 4. Here we plot N versus v/Rs for various fixed values of ω̄Rs. The occupation number

at all frequencies grows as the collapse progresses (i.e. v/Rs decreases) but never diverges. The

occupation number would probably diverge when the singularity is hit at v = −0.126 because of

the infinitely strong gravitational field, but our approximation breaks far from the Schwarzschild

radius which is crossed at v = 0, so we do not extend our plots all the way to v = −0.126. The

curves are lower for higher values of ω̄Rs.

Ω

-RS

� S = -

Figure 5. Here we plot N versus ω̄Rs for various fixed values of v/Rs. The occupation number at

any frequency grows as the collapse progresses (i.e. v/Rs decreases) but never diverges.

is T ≈ 0.7/Rs. Unlike the case of Schwarzschild coordinates, where the spectrum becomes

thermal in the whole frequency range at late times, in Eddington-Finkelstein coordinates

the spectrum never becomes thermal in the high frequency range. We can not extend our

quantitative analysis all the way to the singularity, since the approximation we used in

eq. (3.10) fails far from R ≈ Rs.

We also note that all of the plots were made for the numerical value of the eigenvalue

y defined after eq. (3.22) of y = 1. Numerical experiments indicate that the spectrum and

the temperature do not change significantly for different values of the eigenvalue y.

– 14 –
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Ω

-RS
H + � L

� S = -

Figure 6. Here we plot ln(1 + 1/N) versus ω̄Rs for various fixed values of v/Rs. Clearly, one

can not fit straight lines through these curves in the whole frequency regime. However, the low

frequency part (ω̄ < R−1

s
) does appear thermal with the temperature that is practically constant

in time v. We get the numerical value of T ≈ 0.7/Rs

4 Conclusions

We studied the question of quantum radiation from a collapsing object from a point of view

of an infalling observer. Precisely, we calculated the occupation number of particles whose

frequencies are measured in the proper time of an infalling observer. As the collapsing

object approaches its own Schwarzschild radius it excites fields that are propagating in

this dynamical background. In the context of the functional Schrodinger formalism, the

information about the excited radiation is contained in the time dependent wave function.

The distribution function of the radiation depends on the wave function overlap between

the initial state (vacuum) and the state at some later time. This formalism allows us

to track the time evolution of the radiation distribution function. This was not possible

in approximations usually used in similar setups, e.g. in Bogolyubov method where one

matches the coefficients between the two static asymptotically flat spaces, i.e. Minkowski

at the beginning and Schwarzschild at the end of the gravitational collapse.

We demonstrated several interesting results. Quantum radiation accompanies gravi-

tational collapse since the metric describing the collapse is time dependent. However, the

characteristics of the emitted radiation strongly depend on the space-time foliation of an

observer. For the infalling observer in Schwarzschild coordinates the radiation distribution

function is not quite thermal, though it becomes thermal when the collapsing object reaches

its own Schwarzschild radius. We call such radiation Hawking-like or pre-Hawking radia-

tion (as opposed to thermal Hawking radiation from a pre-existing horizon). In the absence

of any backreaction, an asymptotic observer will observe a divergent flux of particles at

infinity. However, the number of particles and their energies have different meaning for

different observers. The radiation distribution function (i.e. the particle occupation num-

ber as a function of frequency) depends on the time coordinate that the observer is using.

Naively, an infalling observer would need to encounter an infinite number of particles, but

in finite amount of his proper time. However, it is only the occupation number of particles

– 15 –
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that is divergent, not the actual number of detected particles. An infalling observer can

not detect particles whose wavelength is larger than his detector and therefore would miss

most of them.

By fitting the approximate temperature corresponding to the radiation distribution

function, we showed that the local temperature near the Schwarzschild radius, Rs, is large

and diverges exactly at Rs. This is expected since this local temperature has to be infinitely

resifted in order to get a finite temperature of radiation as seen by the asymptotic observer.

After all, an infalling observer in Schwarzschild coordinates is accelerated at any given

moment, with acceleration which diverge exactly at Rs. Such an accelerated observer

should “see” divergent temperature at the horizon in agreement with the Unruh effect [14].

This still does not mean that the horizon is a violent place for the infalling observer since

local vacuum polarization energy density is usually thought to cancel out the divergence

of the temperature energy density, which yields a finite total energy density.

The situation in Eddington-Finkelstein coordinates is quite different. This coordinate

system is not singular at the horizon, and an infalling observer in these coordinates is

not accelerated. We find that the distribution of the particle occupation number is not

thermal in the whole frequency range. By fitting the temperature only in the low frequency

range (ω̄ < R−1
s ) we find the temperature T ≈ 0.7/Rs. This temperature is somewhat

greater than the Hawking temperature as measured at infinity by an asymptotic observer

T∞ = 1/(4πRs), which is in agreement with results obtained in different approaches (see

e.g. [15]). However, the spectrum never becomes thermal in the whole frequency range, so

it is difficult to talk about the temperature as seen by such an observer.

A Number of particles produced as a function of time

We use the simple harmonic oscillator basis states but at a frequency ω̄ to keep track of

different ω’s in the calculation. To evaluate the occupation numbers at time τ < τf , we

need only to set ω̄ = ω(τf ), where the subscript “f” stands for “final”. So

ϕ(b) =
(mω̄

π

)1/4 e−mω̄b2/2

√
2nn!

Hn(
√
mω̄b) (A.1)

where Hn are the Hermite polynomials. Then eq. (2.24) together with eq. (2.30) gives

cn =

(

1

ω̄π2ρ2

)1/4 eiα√
2nn!

∫

dζe−Pζ2/2Hn(ζ)

≡
(

1

ω̄π2ρ2

)1/4 eiα√
2nn!

In (A.2)

where

P = 1 − i

ω̄

(

ρη

ρ
+

i

ρ2

)

. (A.3)
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To find In consider the corresponding integral over the generating function for the

Hermite polynomials

J(z) =

∫

dζe−Pζ2/2e−z2+2zζ

=

√

2π

P
e−z2(1−2/P ) (A.4)

Since

e−z2+2zζ =

∞
∑

n=0

zn

n!
Hn(ζ) (A.5)

∫

dζe−Pζ2/2Hn(ζ) =
dn

dzn
J(z)

∣

∣

∣

∣

z=0

(A.6)

Therefore

In =

√

2π

P

(

1 − 2

P

)n/2

Hn(0). (A.7)

Since

Hn(0) = (−1)n/2
√

2nn!
(n− 1)!!√

n!
(A.8)

and Hn(0) = 0 for odd n, we find the coefficient cn for even values of n,

cn =
(−1)n/2eiα

(ω̄ρ2)1/4

√

2

P

(

1 − 2

P

)n/2 (n− 1)!!√
n!

. (A.9)

For odd n, cn = 0.

Next we find the number of particles produced. Let

ξ =

∣

∣

∣

∣

1 − 2

P

∣

∣

∣

∣

. (A.10)

Then

N(τ, ω̄) =
∑

n=even

n |cn|2

=
2

√

ω̄ρ2|P |
ξ
d

dξ

∑

n=even

(n− 1)!!

n!!
ξn

=
2

√

ω̄ρ2|P |
ξ
d

dξ

1
√

1 − ξ2

=
2

√

ω̄ρ2|P |
ξ2

(1 − ξ2)3/2
. (A.11)

Inserting the expressions for ξ and P , leads to

N(τ, ω̄) =
ω̄ρ2

√
2

[

(

1 − 1

ω̄ρ2

)2

+

(

ρη

ω̄ρ

)2
]

. (A.12)
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B Behavior of the function ρ near the Schwarzschild radius

To get an understanding of the number of particles created in the near horizon limit we

need to investigate the behavior of the function ρ in Schwarzschild coordinates near the

Schwarzschild radius.

Near the horizon we can then write the velocity term as

|Rτ | ≈ const ≡ A. (B.1)

In this limit the position of the shell is then, from eq. (2.9),

R(τ) ≈ R0 −Aτ (B.2)

where R0 is the initial position of the shell, so we can write

√

1 +R2
τ

|Rτ |
≡ C. (B.3)

Therefore the frequency becomes

ω2 ≈ ω2
0

CB
. (B.4)

Therefore the auxiliary equation becomes

ρηη + ω2
0

Rs

C((R0 −Rs) −Aτ)
ρ =

1

ρ3

or using eq. (2.23) we can write this as,

1

C2

d2ρ

dη2
+ ω2

0

Rs

C((R0 −Rs) −Aτ)
ρ =

1

ρ3
.

after rescaling can be written as

d2f

dτ ′2
= −A

2ω
3/2
0 R

3/4
s C5/4

(R0 −Rs)11/4

[

f

1 − τ ′
− 1

f3

]

(B.5)

where τ ′ = Aτ/(R0 − Rs), and f =
√
ω0(Rs/C(R0 − Rs))

1/4ρ. The boundary conditions

are then

f(0) =

(

Rs

C(R0 −Rs)

)1/4

,
df(0)

dη′
= 0. (B.6)

The last term with the 1/f3 becomes singular as f → 0. Let us consider another equation

with this term replaced by something more well behaved. For example consider,

d2g

dτ ′2
= −A

2ω
3/2
0 R

3/4
s C5/4

(R0 −Rs)11/4

[

g

1 − τ ′
− g

]

(B.7)

with boundary conditions

g(0) =

(

Rs

C(R0 −Rs)

)1/4

,
dg(0)

dτ ′
= 0. (B.8)
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Eq. (B.7) implies that g(τ ′) is monotonically decreasing as long as g(τ ′) > 0. Furthermore,

it is decreasing faster than the solution for f as long as f < 1, since the 1/f3 term in

eq. (B.5) is a larger “repulsive” force than the g term in eq. (B.7). Therefore we have

f(τ ′) ≥ g(τ ′) (B.9)

for all τ ′ such that g(τ ′) > 0.

The solution for g is positive for all τ ′ and, in particular, g(1) > 0 for all the values of

A2ω
3/2
0 C5/4R

3/4
s /(R0 − Rs)

11/4 that we checked. Therefore f(τ ′) is positive, at least for a

wide range.

Let f1 = f(1) 6= 0. Then the equation for f can be expanded near τ ′ = 1.

d2f

dτ ′2
= −A

2ω
3/2
0 R

3/4
s C5/4

(R0 −Rs)11/4

[

f1

1 − τ ′
− 1

f3
1

]

. (B.10)

Integrating eq. (B.10) we can then write

df

dη′
∼ A2ω

3/2
0 R

3/4
s C5/4

(R0 −Rs)11/4
f1 ln(1 − τ ′) → −∞ (B.11)

as τ ′ → 1. Hence ρ(τ = (R0 − Rs)/A) is strictly positive and finite while ρτ (τ = (R0 −
Rs)/A = −∞ for finite and non-zero ω0.

We are calculating the occupation number N as a function of frequency ω at some

fixed time. From eq. (B.4) we see that, in order to keep ω fixed in time, ω0 → 0 as

B → 0. Thus, ω varies with ω0 and not with time. Since f = (Rs/C(R0 − Rs))
1/4, and

f → (Rs/C(R0 − Rs))
1/4 for ω0 → 0, we see that ρ → ∞ and ρτ → 0 as ω0 → 0. This

implies that the occupation number N in eq. (2.32) diverges as τ → τc since B → 0 as

τ → τc.
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